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GLOBAL ELECTRICAL CURRENTS

ABSTRACT

The atmospheric electrical structure of the earth is postulated to
be controlled by a motivating force in the lower ionosphere which is
produced by interaction between neutral atmosphere tidal circulations
and the ionospheric plasma in the prnsence of the earth's magnetic field.
Associated electric fields power the dynamo currents through the Hall
effect with a resulting development of a gross electric potential dis-
tribution in the lower ionosphere. Asymmetries in these hemispheric
potential distributi(ns result in exospheric current flows in low L-shells,

and larger differences in potential produced dynamo return current
flows in high magnetic latitudes result in strong currents through
high L-shells between auroral zones. Vertical thunderstorm currents
with their associated lightning discharges effectively connect the
earth to a low potential region of the dynamo circuit and thus supply
the earth with an average negative charge which motivates a leakage
tropospheric electrical circuit. In addition, the dynamo currents
maintain the magnetic polar regions at different potentials with a
resulting electrical exchange with the solar wind through the earth's
near space. These considerations indicate that observed electrical
and variable magnetic phenomena near the earth are all part of a single
comprehensive electrical current system.
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1. Introduction

A comprehensive concept of the earth's electrical structure has
been derived (Webb, 1968b) which provides a framework into which known
electrical phenomena may be fitted. A principal item in this new con-
cept is the nature of the motivating force which powers this global
electrical system. This power source is hypothesized to result from
interaction between the neutral and ionized components of the lower
ionosphere, a process which derives its energy from the stratopause
thermal tidal circulations. Many details of this concept have not
been investigated, in part because of the deep divisions which have
developed between various segments of the geo-sciences which are inte-
grated by tie concept. It is attempted here to delineate the overall
picture in a form which will facilitate comprehensive consideration
of the concept.

In addition, further analysis of the basic physical processes which
produce the general motivating force is presented. These considerations
support tli' concept of a unified global structure, as opposed to the
past theories which have separated the earth's electrical structure into
more or less independent telluric (Chapman and Bartels, 1962), tropo-
spheric (Chalmers, 1967), lower ionosphere dynamos (Chapman and Bartels,
1962), aurcral and airglow (Chamberlain, 1961) and exospheric currents
(Hines, et al., 1965). The several physical processes which have been
postulated in attempts to understand these phenomena separately are not
questioned at this point. It is presumed, however, that these processes
are secondary to the global structure, even though specific processes
may exert a firm local control.

2. Global Circuitry

The global electrical circuitry model. postulated here is illustrated
in Fig. 1. The time selected for this presentation is at noon during
the summer solstice of the Northern Hemisphere, when, for geometric and
other reasons, conjugate points will generally exhibit higher electric
potentials in the Northern Hemispheric dynamo regions. The nomenclature
employed ii Fig. 1 is:

R res!stqnce
I - current
t telluric circuits
n - Northern Hemisphere

- Southern Hemisphere
f - fair--weather vertical circuits
t_ - convective vertical circuits
h - high latitudes
C - mLdlatitudes
d - zonal dynamo circuits
e - equatorial
I- inner radiation belt circuit
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2 - outer radiation belt circuit
3 - solar wind circuit

The basic driving force is oriented west-east near the 100 km I
level in low latitudes of each hemisphere during local daytime. This
force drives the dynamo currents (I ) or more LdLL amperes which
produce a complex electric potential distribution in the lower iono-

sphere with hemispheric differences of the order of 106 volts. The

earth, located approximately 100 km under the spherical shell which
contains the dynamos, is connected to the dynamo circuits by vertical
convective currents (I_), principally in late afternoon and evening

at low latitudes where the dynamo potential3 are negative relative to
noontime. This geometry impresses an observed negative charge of more
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Figzure 1. Schematic Diagram of the Global Electrical Circuitry

for the Local Noon Meridian.
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than I05 coulombs on the earth, which in turn produces an approximately

symetica 13 amperes vertical current (If through the fair-weather

semiconducting lower atmosphere with associated telluric currents (Iter

through the earth's crust to thunderstorm regions.

In general, the electric potentials at conjugate points of the two
hemispheres will not be equal. In low latitudes exospheric currents

(I ) will flow along magnetic field lines principally to relax potential
differences imposed by differences in the basic dynamo driving forces.
Auroral zone hemispheric potential differences will produce larger exo-
spheric currents (I ) at high magnetic latitudes, principally as a result
of the asymmetry be~ween the rotational and magnetic systems.

The final supplementary current path is formed by interaction of the
earth's magnetosphere with the solar wind. Polar regions of the lower
ionosphere will be maintained at different electrical potentials by the
dynamo currents, and currents (I3) through the solar wind plasma will re-
sult. It is probable that the geo-segment of this circuit will incor-
porate the I circuit. During strong solar disturbances this current
is known to gecome intense, approaching the 105 amperes of the dynamo
circuits, although in general the exospheric currents are orders of mag-
nitude smaller than the dynamo currents.

The earth's global electrical structure is than established by the
potential field of the dynamo currents. Tropospheric and exospheric
electrical structure is formed by leakage current paths which are con-
trolled by the basic dynamo potentials.

3. The Dynamo Driving Force

The dynamo currents represent the principal geo-electric phenomenon,
wirl average intensities which are two orders of magnitude greater than
other circuits. An understanding of the earth's electrical structure re-
quires that the force which drives these lower ionosphere currents be

*clearly delineated.

A new attempt at this problem has been made by Webb (1968a, 1968b,
1969) based on an assumed net vertical motion imposed on the upper atmos-
phere by tidal circulations of the stratopause regions. The characteristic
cold mesopause indicates, in agreement with other observations, the presence
of turbulent flow in the mesosphere to transport heat downward through
adiabatic processes. A model of the general daytime vertical structure of
moiecular and eddy transport coefficients based on limited amounts of data
(Lettau, 1951; Booker, 1956; Zimmerman and Champion, 1963; Kellogg, 1964;
Johnson and Wilkins, 1965) is presented in Fig. 2. Higher values of eddy
transport coefficients have been reported in the 80 to 150 km region (Zim-
merman and Champion, 1963) but the molecular diffusion stratification which
is observed above approximately 105 km (Blamont and de Jager, 1961) indicates
that a portion of the observed values may result from electrically forced
diffusion of the ionized trail sensors. These considerations then indicate5
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Figure 2. Model Molecular (solid curve) and I Jdd- (dd. hcd ,urve)
Diffusion Profiles

t -at the 7,1-100 km region lic characterized by eddy trainsport coefficients0 he rarv of 10/ - 09 n Fec -1

Nc.? the daytime electron-positive ion conce-ntration (n) in the 70-100
km region varies over roughly three orders of magnitude, with a 100 km
vAlue. (f approximately 10 1 electrons and positive ions per cubic meter.

Ne ative L4charged particle 5lapse 4rates of 5 x 106 P M- 4 at 100 km, 8 x

5 .5 5

10 p m- at 90 km and 0 p m- at 80 km with this eddy transport(Fig.
will produce a downwed flux of collision-controlled charged particles
given by the relationkm egonvaie oerro~hy hre rdrsofmaniud, it a104k
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As has been pointed out before (Fejer, 1965; Webb, 1968b), in this region
of the atmosphere collision processes will transport positive ions but
are ineffective in transporting electrons. Downward transport of positive
ions by these eddies in an electrically neutral atmosphere will effect
charge separation at a nominal velocity given by

FV = n (2)
n

The nominal downward velocities of positive ions under the above conditions

will then be of the order of 1 mps at 80 km, .8 mps at 90 km and .5 taps at

100 km.

As was shown by Webb (1968b) such charge separation will, in equatorial
regions, result in production of an upward-diracted electric field which
will force positive ions to migrate upstream with an equal speed so that
electrical equilibrium is achieved. This latter situation is described by
the relation

qE = Mvw (3)

where q Is the particle charge, E is the equilibrating-electric field, M
iq the particle mass, v is the collision frequency and w is the particle
velocity relative to the medium. The data presented above with the assump-
Lions of Ilebh (1968b) indicate that electric fields directed upward with
!.:xium intensity of 0.2 v m-1 at 80 km will be generated by this mechanism.
.At night this mechanism will be reduced in intensity by approximately two
orJers of magnitude as a result of a similar decrease in electron density.
This situation has been shown (Webb, 1968a; 1968b) to be adequate to pro-
ducn, through the Hall effect, an electric potential field which is con-

sistent with known electrical phenomena of the region.

The above discussion and that of Webb (1968b) indicate that the driv-
ing forces of the dynamo currents are reasonably derived from vertical
!:harge separation produred by collision processes in the circulations and
turbulence produced by the stratopause thermal tides.

,. Trorospheric Electrical Structure

The fair-weather electrical structure of the lower atmosphere has
1,.tn extensively explored (Chalmers, 1967). It is variable, with a general
resistivity vertical structure of the type illustrated in Fig. 3 (Cole and
Pierce, 1965). Here the bulk resistivity of the air exhibits its charac-
teristic high value near the surface, decreasing rapidly with height so that
the vertical path resistance is established by the resistance of the lower
few kilometers. Almost 982 of the total vertical path resistance of rough-
ly 1.8 x 1017 ohm m2 is obtained in the first 10 km, and almost 90% is ob-
tained in the first 5 km.
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Figure 3. Typical Low-Latitude Vertical Resistivity Structure of the

~Troposphere and Lower Stratosphere.

[S

~In the stable fair-weather case, the vertical distribution of atmos-
~~pheric space charge which produces the observed change in potentiJl gra-

dient can be calculated approximately from the relation

a2V
0 € - (4)-

o h2

here V iq the electric potential, and c 8.854 x 10- 12 farads per meter is

200

the permittivity of free space. Neglecting horizontal currents, the fair-

weather eleczric current of the lower atmosphere will be constant with
~height, and, to a good approximation (Ohm's law), the potential distribu-

tion has the character of the resistivity curve of Fig. 3, with an overall
potential difference of approximately 3 X 105 volts. By applying Eq.4 to
these data, a representative vertical fair-,.-.ather space charge distribu-
tion is obtained as illustrated in Fig. 4. Clearly, the positive space
charge of the atmosphere which must face the observed surface charge density
of approximately -8.8 x 10- 0 coulombs M- 2 is principally contained in
the lower troposphere. The traditional leaky capacitor concept of fair-
weather electrical structure is thus modified to include a diffuse upper

6
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plate located in the lower troposphere. The fair-weather troposphere
capacitor plate contains a total positive space charge of approximately
400,000 coulomLs, with a roughly equal negative charge on the surface
of the earth. In addition, the vertically integrated space charge of

- the dynamo region (75 - 120 ki) of roughly 10- 1 coulombs m-2 is negli-
gible compared to these tropospheric space charges.

1 30-

20-

- oF 10

iL,

0 6
I0 10 10 10 1010CHARGE DENSITY (eM1" i

Figure 4. Typical Low-Latitude Vertical Structure of the Atmospheric
Fair-Weather Positive Elrctric Space Charge. N

The very low electrical mobility of most tropospheric ions in the
boundary layer indicates that, in the presence of the general fair-weather
potential gradient, electrically forced molecular diffusion will be, on
occasion, exceeded in intensity by eddy diffusion. Mixing produced by I
thermal and frictional effects may dominate electrical physical processes
under certain conditions so that the electrical structure which results
frequently deviates from the simple picture of a homogeneous, stratified,
static fair-weather field which is assumed above.
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Certain features of the tropospheric electrical structure are comn-
paratively static. This is true of any high impedance circuit, however,and does not alter the basically dynamic nature of earth electrification.
The gross capacitance and charge of the earth's tropospheric electriN]
system (C 1 1 farad) and small vertical current densities (approximirely72 x 1-12eamperes m 2 ) of the troposphere effectively filter the varia;0,.
aspects of atmospheric electricity, shielding the surface layers fromth th
very dynamic aspects of higher levels.

The fair-weather capacitor electrical structure described above iseffectively disrupted by occurrence of convective systems. Air that is4 .. rich in positive charge (Fig. 4) is assembled by the lateral flow, im-
mobilized by droplets at low levels (1-2 kmn), and transported verticallvby these convective systems in a thin column which spans the lower 10-25km of the atmosphere as is illustrated in Fig. 5. The relatively low

30

.;- -102- /

'L-- - - - - -~ -

21]

1 20 "10 0 10 20

DISTANCE (KM)

Figure 5. Initial space charge distribution associated with a convective
cell before the dynamo potentials become involved. The dashed
curve indicates the structure of the cloud, and the arrows in-
dicate net motions of charged particles.

8



mobilities of tropospheric electrical charges are generally reduced
drastically by condensation processes so that characteristic surface
boundary layer electrical time constants of tens of minutes are effec-
tively extended to beyond the half-hour lifetime of the average convec-
tive storm. If a 14 mps mean vertical flow through a 7 kv. diameter
throat of a convective cloud (Goldman, 1968) with 106 excess positive
charges per cubic meter (Fig. 4) is assumed, the more intense convective
systems will transport approximately 10- 4 coulombs of resident positive
charge upward each second. A first response to this positive convective
current will be an intensification of the fair-weather type field under
the cell as the positive space charge converges. Rapidly, however,
neutralization of this convection-borne positive space charge relative
to the earth will be accomplished by negative ions in the upper atmosphere
so that the negative surface charge on the ground undet the cell will
3tabilize.

Introduction of this charge structure into the upper troposphere
and lower stratosphere will result in strong response by the highly

Lcnnducting upper atmosphere. Relaxation time constants (T , -

conductivity, Chalmers, 1967, p. 39) of approximately 100 seconds at
5 km, 20 seconds at 10 km, 4 seconds at 15 km and one second at 30 km

in clear air around the thunderstorm may be expected. Upward transport
:,I- a cvli Irical column of air containing roughly one coulomb of posi-
tive charge into the 5-15 km region of the storm can be expected to very
quickly result in flow of an equal negative charge onto the edge of the
cloud in the lower atmosphere. The mobility of the charge carriers in
tnis conduction current will also decrease drastically when they enter

the cloud as a result of capture by cloud droplets. This process will I
i.-sult in development of a thin sheath of negative charge around the
positive core of the storm. The intruding positive space charge may

"hen be eliminated by discharges within the cloud between these centers
",'ae uoT1cTntration or by recombination at the top of the cloud

w!lere the cloud particles evaporate I
The capacitance of this vertical cloud system per unit length can be

'srimated by the relation for specific capacitance of a cylindrical
capacitor with inner plate at radius a and outer plate at radius b (Wilson,

21T E c
ln(h) (farads per meter) (5)

a

Usin, values of c = 1, a = 3.25 km and b = 3.5 km, the capacitance of this
vt.rticat cloud system is found to be approximately 7 x 10O 0 farads m- 1 .

This estimate indicates that the positive space charge of the fair-weather
field near the surface will supply a specific positive charge concentration
(q) of approximately 2 x 10 - 6 coulombs per meter length of the cloud. The
equilibrium electric potential of the inner cylinder which results from this
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&* central charge can be approximated by (Wilson, 1958)

Va 2n i - (volts) (6)
0

which yields approximately 3 x 103 volts.

The boundary of the storm cloud will acquire a neutralizing negative
charge resulting from a downflow of negatively charged particles from the
highly conducting dynamo region above the storm. This electric current,
which is directed upward, must have a magnitude of 10- amperes to match
the upwelling positive current in the cloud. This vertical current has
important impications for the electrical structure of the lower atmosphere
and the earth's surface. Our electrostatic structural assumptions of the
fair-weather situation are immediately invalidated as this upward current
punctures the earth-troposphere capacitor, and the following two major
conditions will prevail:

a. There will be a V - IR voltage drop along the current path from the

storm cloud to the dynamo circuit above. Nominal value- of I l0- 10

amperes m-2 and R . 1015 ohm m2 give potential drops of 105 volts, with
the top of the storm at the higher potential.

b. The top and sides of the cloud will assume the potential of the dynamo
current above the storm plus the difference of (a). This latter item is
of major umportance, since it has been shown (Webb, 1968b) that the poten-
tial drops of the dynamo currents introduce gross horizontal potenLial
variations of the order of 106 volts into the global electrical structu1,,
of the lower ionosphere. Thus, the storm cloud upwalling if positive
charge from the fair-weather field discussed above will have the net re-
sul of adjusting the potential of the outer margins of a c nvective cloud
down to altitudes of 1-2 km toward the gross potentiat o1 tie dynamo r. -
gion above tile storm.

Stergis, Rein and Kangas (1957) have measured the potential gradient
and conductivity near 20 km above thunderstorms from the direct current
paint of view, obtaining results indicating an upward current of the order
f one amper( over each storm with maximum negative potential gradients

c,f a few hundreds of volts per meter. Using 200 volts m- at 20 km, 50
volts m"1 at 25 km and the resistivity curve of Fig. 3, the petential
e-oDp in. this current path approximates 5 x 105 volts under steady-state
ccncitions.

When the dynamo potential above a :cnvective cloud is negative rela-
tive to noontime (late afternoon and nighttime; Webb, 1968b), a positive
surface charge will be impressed on the earth's surface in the vicinity
of the convective cloud, the tropospheric electric field will reverse
sign relative to the general fair-weather situation and the potential

10
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difference between the earth's surface and the outer margins of the cloud
will b(. double that of the dynamo circuit to which the storm is connected.
Introduction of negative dynamo -ntials of the order of 6 x 105 volts
or greater to near the earth's e will induce coronal discharge of
positive charge (Chalmers, 196-, apter 9). With development of convec-
tive systems, enhancements of such space charge by more than three orders
of magnitude above the fair-weather values have been observed (Vonnegut,
Moore and Botka, 1959). Thus, the 10-4 amperes vertical current mentioned
above as produced by the fair-weather space charge will be increased to
more than 10- amperes, and the captive charge of the cloud condenser will
be increased to more than 10- coulombs per meter for a total cloud charge
of the order of 10-I00 coulombs. These values imply general potentials
across the cloud condenser system of 106 to 107 volts, and it is likely
that inhomogeneities in the entire process can easily produce the local
potentials of 108 volts and greater which appear to be required to ini-
tiate observed lightning discharges.

The tropospheric return current through thunderstorms must then con-
sist of three modes. The first is upward transport of positive charge
in the convective current, and the transport of these charges may repre-
sent an added source of energy for the tropospheric electrical circuit.
The second is a conduction flow upward outside the convective system
involving positive coronal charges migrating upward from the surface
and combining with downward-moving negativc charges, moving in the forced
diffusion mode at higher altitudes and in convective downward motions
around the cloud system at low altitudes. The third mode is high inten-
sity upward current flow across the lower atmosphere in intermittent low
resistance lightning discharge paths. Convective cells thus establish
local electrical structures in which the approaching negative charges
from above polarize the earth's surface, producing a negative potential
gradient and an upward current flow.

The concept of thunderstorm electrification presented above is paral-

lel to the concepts developed by Grenet, Vonnegut and Moore (Grenet, 1947,
1959; Vonnegut, 1955; Vonnegut at al., ]959; Moore et al., 1962; Vonnegut
et al., 1961; Moore et al., 1960; Vonnegut and Moore, 1960; Moore et al.,
1958), with the major exception of addition of the horizontally stratified

* 100 km region dynamo circuit potential to induce corona and activate the
electrical processes of convective cloud systems. Convective energy is
necessary in initiating this series of events, but the impact of the dynamo
electric potentials is overwhelming. These considerations indicate that
the partial agreements which have been obtained by numerous thunderstorm
electrification theories (Chalmers, 1967) are simply fortuitous, with the
basic tropospheric charge-separating mechanism centering on vertical eddy
transport of captive space charge.

LThe tropospheric electrical circuit elements discussed above require
that a portion of the circuit lie in the earth. The diffuse global fair-
weather current must converge to a few local storm areas for the return
trip through lightning discharges. Elementary physical considerations

!,1



indicate that these telluric currents will flow in the surface layers of
the earth. Since thunderstorms and their associated lightning events
exhibit maximum occurrence at low latitudes in the afternoon and evening,
these telluric currents must be generally directed equatorward during the
daytime and poleward at night.

Electric currents have been known to exist in the earth's surface
since the mid-19th Century. Use of long copper telegraph lines over
land regions (a 0 - 109 ohm meter reduction in resistivity) indicated
the presence of low-latitude potential differences as high as 10- 5 v m- 1
over the surface of the earth with their associated currents. Chapman
and Bartels (1962) have summarized the early studies of this phenomenon.
They indicate resistivities of a f;±w tenths cf an ohm meter in sea water
and 1-50 ohm meters in moist loam, with an average value of 100 ohm meters
for the general topsoil. Increased resistivity with depth in the ocean
results from the colder waters of ocean depths. All considerations in-
dicate that telluric currents are a shallow surface phenomenon.

If a 1 km layer is considered representative, the 10- 
- 10- amperes

m 2 which Chapman and Bartels reported for continental areas yield inte-

grated half-day hemispheric telluric currents in the 102 - 103 amperes
range. This vilue is low since high-conductivity ocean paths will provide
partial shor;:s for the continental currents. The intens;ty of telluric
::urrents may thus be considered adequate to supply the consolidated flow
from the global fair-weather charge accumulation to the bases of lightning
paths. Redding (1967) has pictorially described the diurnal structure
of low-latitude telluric currents, showing that they do indeed flow toward
low latitudes during the day and toward the poles at night, indicating that
they flow toward the region of principal thunderstorm activity.

Severe complications in telluric current observations ,;used by tech-
:7que difficulties, local impedance variations and surface charges prevent
devta.'ed association of this current segment with the vertical components

IAf tht tropospheric electric circuit. Much morC. JInfoicnlt or rs ac re-
v.'.ir,f1 r. -itivc to the location of lightning return paths before an dd.-ju-te
uocerrtanding can be obtained. It :is concluded, hiowejer, that r.l~lurlc
currents are indeed adequate to provide the earth circu'it sewment for the
tropospheric current path of the dynamo circuits.

k detailed schematic diagram of the tropospheric electrical circuitry
, a vertical low-latitude zonal plane from the high dynamo potential point

4L 2 P.M. into the low potential region of nighttime is presented in Fig. 6.
The principal driving force (with potential diffcrences of the order of 106
v) is ! cated at the base of the horizontally stratified dynamo circuit neai"
gO km altitude (Webb, 1968b). This force causes current to flow from low
to high potential and results in accumulation of a diffuse positive space
charge in the region marked A(q A, 10 em- 3). The principal leakage return
path for this potential difference is the dynamo current (approximately 105
amperes) circuit through high latitudes at the 100 km level, but a secondary
tropospheric return current (I, approxim3tely 1500 amperes) circuit is
established in the tropospheric mode Illustrated in Fig. 6.

12
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Figure 6. Schematic Circuit of Tropospheric Electrification in a Vertical
Low-Latitude Longitudinal Plane from 2 P.M. to after Sunset.

l'ie fair-weather vertical portion of the tropospheric circuit is
rpresenced by the resistance R and the capacitance C . Nominal values
of electrical circuit elements In this region are path resistances of
I- ohm m1specific capaLLdnce of farads m- 2 , current densities

of 2 x ]0m' amperes m and 3 x 10 volts ovcrall potential difference
(lower aIt t, ground) as was discussed above. Telluric impedances (Rt

potential drops of 10 - 6 volts m- with continental current den-
ities f,f 10-1 amperes m- 2 in the general case. Stratospheric impedance

R) above convective storms appears to be equivalent to that of the

ALratosptere in other locations (Fig. 3), but the area above a convective
qtorm iF the site of larger current densities and thus of larger electric

While the conductivity in a cloud is subject to debate, it will be
asumed here chat in strong convection, high cloud droplet concentrations
( l q m- 3) will prohibit effective molecular diffusion of charges so
that resistance to electrical current flow in the cloud will become very
,reat, with general cloud characteristics of a condenser (Ce, Fig. 6) of
U] f capacitance for a 20 km length cloud. During initial stages of con-
vective development, the electrical force provided by convective eddy
motions will be limited to supplying current flows of the order of 10-

.mp.cre in individual systems. When the convective cloud system becomes
effectively connected to the dynamo electrical potential above it, how-
ever, coronal discharges from the earth's surface into the low-level air
which serves as the source for convective mass transport will strongly
enhance the electrical transport process. In this case, the convective
transport current will become very strong, possibly contributing signif-
icantly to the total current flow of the tropospheric electrical system.

13



On occasion lightning discharges (S2 in Fig. 6) may serve to negate this
contribution.

Observations indicate that lightning discharges may act as switches
(S1 and S3 in Fig. 6) to short the charges which accumulate in the cloud-
generated open circuit, During the period in which a lightning path
exists, the path resistance of the convective segment of the tropospheric
portion is reduced many orders of magnitude, and the upward tropospheric
current flow will then be through the resistance R . When lightning paths
exist, the tropospheric leakage current path of the dynamo circuit is

R-R + R + Rf t a

which reduces to R + R to a good a~proximation. These are known to
be approximately 1 8 and 1016 ohm m , respectively (Fig. 3).

Current densities through these two portions of the tropospheric
circuit will be different, however, due to the significant difference in
cross-sectional areas of these circuit elements. Peak current densities
over severe storms appear to be of the order of 102 times Lhe fair-
weather values, but reasonable mean values over storm areas would be of
the order of ten times greater. This would indicate that the potential
drop of the fair-weather leg (Rf) is several times that of the strato-fIspheric branch (R ). Flow through this voltage divider thus maintains

the earth near the average negative potential of the portion of the
dynamo circuit under which the convctive storms operate. I

Since the fair-weather current flow is generally toward the earth

even relatively close to thunderstorms, it is clear that the intermittent
nature of lightning is of considerable Importance. Through this mecha- j
t|ism, the earth is closely related to the mean electrical potential field
of the dynamo region above active storms, but the brevity of the events
(milliseconds) does not allow the sluggish troposphere (tens of minutes)
to approach equilibrium with the new circuit parameters during this special
event. The average potential of the earth is thus maintatned at a negative I
value relative to the tropospheric condenser plate by the local dynamic
characteristics of this tropospheric circuit.

5. Exospheric Electrical Structure

The vertical distribution of the dynamo currents at low latitudes
has been derived by Webb (1968b) from stratospheric tidal circulation
data. Chapman and Bartels (1962) and recently Matsushita and Maeda (1965)
and Matsushita (1965) have used data on variations in the geomagnetic
field to derive the lateral distribution of electric current systems which
flow in the upper atmosphere. Under the assumption that these "dynamo"
currents are confined to the 100 km region globally by the unique "Fall"
and "Pedersen" conductivity profiles it is possible to derive the global
current density of that level. Conductivity structures of the 100 km
surface may be approximated from published mean electron density data

14



(Wright, 1962) and magnetic field aspect data (Vestine, et al., 1947)
for particular values of collision frequency. Through use of these
sources of information it is possible to calculate the electric poten-
tial field of the 100 km surface.

The result of such model calculations for Northern Hemisphere fall
equinox time is illustrated by the model potential distribution presented
in Fig. 7. A high-potential region of the order of 106 volts is indicated

I9

Figure 7. Model electrical potential field for the lower ionosphere at
equinox time. Units are volts. The dashed curve represents
the auroral oval.
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by these considerations to be located in early afternoon low latitudes,
with an expansive region of low potential covering nighttime regions.
High-latitude auroral regions are indicated to be at intermediate poten-
tials, with considerable variations ir potential around the anroral ovnt.
The position of the southern magnetic pole and its auroral oval aL the
time of Fig. 7 indicates that there will be significant differences in
potential of the dynamo regions between conjugate points, even in thi;
relatively symmetric equinox situation.

Consideration of the variations which will be introduced into thesc
hemispheric potential distributions diurnally as a result of rotatio:,]
and magnetic axes asymmetries indicates that local potentials and conju-
gate potential differences will vary markedly in the course of a day.
In addition, the known gross inhomogeneity of the ionosphere in small
scales and the detail structure of the stratospheric tidal circlat~ion
and tropospheric lightning perturbations will assure inhomogeneou.' dvn;mr,.
currents and thus highly inhomogeneous potential fields. Mark, d Uitfi-
cnces will occur at similar geomagnetic latitudes between summer and
winter hemispheres as a result of differences in conductivity structute
and intensity of the tidal circulations. These differences are in addi-
tion to the above-mentioned local and hemispheric variations, with the
result that the global potential field of the 100 km level will be very
complex indeed. The smoothed curves of Fig. 7 must be interpreted as
averaged conditions with gross variations superimposed locally.

All of the above calculations have been based on the assumption that
the dynamo circuits are independent current systems which are isolated
from other sources or sinks of electrical energy. This is an approxi-
mation which, on the lower tropospheric side, has been evaluated (Webb,
1968b) to involve neglect of currents of the order of one percent of the
dynamo current system, and thus generally negligible relative to the 100
km dynamo current, and potential structure. An exception is to be noted
in the case of short period changes resulting from events such as light-
ning discharges, where large charge transports (30 coulombs moved 10 km
vertically) do introduce gross potential changes for short periods.

Boundary conditions on the upper side of the dynamo currents are
less likely to be negligible, however, as a result of currents which
may flow in the high conductivity plasma in which are embedded magnetic
field lines of the magnetosphere. At some level in the upper ionosphere
the known reduction of plasma density and the increase in dynamic imped-
ance (Swift, 1965) with height will reduce the conductivity (increase
the resistivity) to the point that substantial electric fields will exist
along the magnetic field. These magnetic-field-aligned electric fields
will result in acceleration of charged particles to higher energies than
are representative of ambient neutral particles and will accelerate the
positive and negative particles differently according to mass. In the
upper portions of this accelerating region, some of the more favored
particles will gain escape velocities and will move out along the mag-
netic field toward the conjugate point of the other hemisphere where
they will execute a reversed but similar program of energy exchange with
that upper ionosphere region.
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The above described vertical motions will represent new sources and
sinks of electric current for the dynamo currents which we have described
above and thus modify the potential field of the dynamo region. Under
quiescent conditions, these exospheric currents are indicated to be of
the order of 10-12 am- 2 (O'Brien, 1964) and thus are reasonably negli-
gible, but there is observational evidence that on occasions of solar
disturbances the-e interhemispheric currents exhibit extreme values of
l0G ' am- 2 (Sharp, et al., 1967), and thus may be competitive locally with
the dynamo currents in intensity and may introduce gross modifications
to the simple E-region potential distribution picture presented in Fig. 7.
This is especially to be expected in high latitudes where interaction
between the earth and the solar wind can be expected to support large
vertical currents.

The dynamo currents of the E-region will be modified by currents
flowing through the exosphere in paths formned by the earth's magnetic
field and the exospheric plasma. The conductivities of these paths are
complex, with charged particle diffusion modes the rule in low altitudes
and particle transient modes dominate in the magnetosphere. Buneman
(1959) indicates that the magnetospheric longitudinal (along the field)
conductivity is given by

, =5.556 x 10 - P u
p e (7)

where w is the plasma frequency of the electrons. This indicates a
pe

conductiviLv of approximately .5 mho m- 1 in the 500-600 region, decreas-
ing to approximately 102 at high altitudes.

These values indicate that exospheric path resistances on low L shells
(I.1) are of the order of 109 ohm m2 , on aurora] L shells (L5) of the order
of 1010 ohm m2 and in the polar regions of the order of 1011 ohm m2 .
These path resistances may be compared with estimated 1010 ohm m2 (Webb,
>i68b) resistance of the dynamo 100 km level return current circuit
through the auroral zones and the 1017 ohm m2 (Webb, 1968b) resistance
of the tropospheric circuit.

In low latitudes, magnetospheric currents will flow as a result of
cifferences in the conjugate potentials of the powered (zonal) and relaxa-
t' nal (meridional) segments of the dynamo circuits. These currents (IIt

Fig. 8) are in the region of the inner Van Allen belt and are thus assumed
:, be associated with development of that trapped radiation. These currents
act to smooth differences between the hemispheric dynamo current generators.
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Figure 8. Schematic of exospheric current systems for the case in which
tthe dynamo current potential fields hold the northern magneticr high latitude at a positive potential relative to the Southern

Hemisphere.

Zonal flow of the dynamo currents in auroral zone E-regions will re-

suit in strong zonal potential gradients around the auroral oval. In-
spection of the geometry of the high latitude case (Webb, 1968b) indicates

that when the hemispheric dynamo potentials in the driving regions are

equal, differing hemispheric meridional path lengths of the dynamo return
currents would tend to produce occasional conjugate potential differences

of more than 10% of the total dynamos potential gradients, or of the order
of 105 volts in high latitudes. Exospheric currents along the magnetic
field will develop in response to these gradients and tend to reduce them.
The result will be current flows (12) as is illustrated in Fig. 8.

At high geomagnetic latitudes, the magnetic field lines between hemi-
spheres become electrically completed as a result of interaction with the

plasma and magnetic field of the solar wind. Nonlinear acceleration proc- I
esses will result in potential differences along magnetic field lines, and
the interhemispheric potential differences will be reduced with increesing

latitudes i, polar regions as a result of these current flows. The current

18
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flow in this third magnetospheric current regioni is designated 13 in
Fig. 8, the dashed portion indicating the uncertain current path through
the magnetospheric tail and the solar wind.

These three current systems are assumed to provide support for the
ritig current which has been hypothesized to circle the earth (Chapman and~Bartels, 1962), produced by transverse drift motions imparted to charged
particles participating in these magnetospheric currents as a result of

accelerating electric fields. The gross geometry of I indicates that
it will be ineffective in producing the magnetic effects of the ring
current which are observed at the earth's surface. Satellite observa-
tions indicate that I1 is relatively stable. It is concluded, then, that
the principal contributor to surface-observed ring current magnetic field
changes is probably I2, presumably as a result of solar wind currents from
13 through the high-latitude ionosphere and through the 12 circuit. The
currents through I and I are thus directly modulated by the intensity
of the solar wind. This is the "indented current ring" of Akasofu and
Chapman (1964). Thus, auroral activity, the ring current and its associa-
ted magnetic effects, polar storms and other physical processes associated
with I and I will vary with these two controlling processes.

2 3
Small-scale variations in the dynamo currents will induce inhomo-

geneities in the inrerhemispheric current flows, resulting in strong
gradients in these currents with magnetic latitude and lonaitude. These
inbomogeneities in ionospheric potentials will introduce variations in
exospheric current densities which can be expected to result in electric
firlds transverse to the geomagnetic field which will, in turn, result

* in particle motions normal to the plane of these two vectors. Transport
of plasma into and/or out of the plasmasphere may be expected to result.

tMeasurements of precipitation currents in the ionosphere indicate
an7,ad1 a 2 i oarrgos(ed 1965).m Obvatio s ofg

genpral values of approximately 10-12 am
-2 and maximum values as high

as i0- 11 am-2 in middle latitudes (Paulikas, et al., 1966; Mozer and
Bruston, 1966), 10- 7 am- 2 in auroral zones (O'Brien, 1964; Sharp, et al.,
)1967), and 10 - 12 am- 2 in polar regions (Reid, 1965). Observations of

the polar electrojet magnetic effects indicate high-latitude ionospheric
currents in the 100 km altitude region during disturbed periods of the
order of l0 amperes which are thus of the same order as the basic dynamic
cirrents. This "ring current", mentioned above, which is indicated by
global magnetic field variations under disturbed conditions, is estimated
to be of the order of 106 amperes if it is located in the L5 regions.
Assuming that these currents are segments of the same current system (i.e.,
the ring current and the auroral electrojet are not completely closed at
their respective levels), vertical currents into and out of the ionosphere
are inferred. Maximum values of cross-sectional areas of the two available
vertical current paths in each hemisphere are of the order of 1013 m 2 which
then infers magnetic-field-oriented vertical currents greater than 10-8

amperes m- 2 .

19

JM0



Preliminary inspection of the geometry ot this situation indicates
that optimum conditions for flow of high-latitude exospheric currents
will occur at equinox time (Webb, 1968b). This results from the enhanced
polar conductivity of the ionosphere which is denied one or the other
polar region at solstice time. That is, the circuit of T is characterized
by increased path resistance at solstice time.

6. Conclusions

The considerations presented above provide a coherent global system
of electrical currents in the earth's environment. The principal driving
force is indicated to be vertical transport of positive ions in Lhe lower
ionospheric region. Through the Hall effect, the dynamo currents are
powered, and tropospheric and exospheric currents simply repre ent leakage
paths for the basic dynamo currents.

The model of earth electrification presented here is at strong vari-
ance with previous concepts of electrical phenomena in the earth's vicinity.
In particular, introduction of neutral-electrical interaction as the basic
motivating force of the general electrical structure represents a distinct
new line of reasoning. Long-held views of thunderstorm processes as the
basic energy source for the lower atmosphere and more recent models of
magnetospheric processes as the basic energy source of the upper atmosphere
lose some of their flavor in light of these new considerations. The idea
of ar equipotential ionosphere appears at this time to be clearly in error.

The simplest physical considerations would indicate that a unified
global electrical structure would be the most likely case. Maintenance of
isolated independent electrical systems in various parts of the atmosphere
would appear to be a very dif'Licult situation to achieve. Failure of the
various segregated models to effect adequate explanations for the observed
local electrical structure and particularly for the interface structure
which must exist has provided some indication of their inadequacy. Exper-
imental difficulties have in many cases precluded confirmation of postulated
structure and today remain the most difficult obstacle to further progress.
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13 LUSTRACT

-T1he atmospheric electrical structure of the earth is postulated to

be controlled by a motivaring force in the lower ionosphere which is
produced by interaction between neutral atmosphere tidal circulations
and the ionospheric plasma in the presence of the earth's magnetic field.

Associated electric fields power the dynamo currents through the Hall

effect with a resulting development of a gross electric potential dis-

tribution in the lower ionosphere. Asymmetries in these hemispheric

potential distributions result in exospheric current flows in low L-shells,
and larger differences in potential produced by dynamo return current

flows in high magnetic latitudes result in strong currents through

high L-shells between auroral zones. Vertical thunderstorm currents

with their associated liglitning discharges effectively coraect the

earth to a low potential region of the dynamo circuit and thus supply

the earth with an average negative charge which motivates a leakage

tropospheric electrical circuit. In addition, the dynamo currents

maintain the magnetic polar iogions at different potentials with a

resulting electrical exchange with the solar wind through the earth's

near space. These considerations indicate that observed electrical

and variable magnetic phenomena near the c-- ... .all part of a single
comprehensive electrical current syst,
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